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Abstract. The uniform distribution of the trace map lends itself very
well to the construction of binary and non-binary codes from Galois fields
and Galois rings. In this paper we study the distribution of the trace map
with the argument az? over the Galois field GF(p,2). We then use this
distribution to construct two-weight, self-orthogonal, trace codes.
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1 Introduction

In [11] and [12] the trace map over Galois field GF(p, m) and ring GR(p®, m)
was used to construct linear codes over Zgs and Zys, respectively. At that time
the distribution of the trace map was very intriguing and the question arose of
whether this trace distribution was as straightforward when the argument was
changed. One encounter of a different argument was in the search for mutually
unbiased bases which can enable a quantum cryptosystem in d-dimensions [4].

The authors were unable to find any information in the literature about such
distribution of the trace map other than the fundamental properties. It does turn
out that this work is not straightforward and this paper looks at the distribution
of Tr(ax?) over GF(p,2) for odd primes p. The two-weight self-orthogonal codes
generated using this distribution are a by-product.

Let p be a prime and Zj; be the vector space of all n-tuples over the finite
field Z,,. If C' is a k-dimensional subspace of Z; then C' is called an [n, k] linear
code over Z,. The generator matrix G of an [n, k] code C is simply a matrix
whose rows are linearly independent and span the code. The inner product of
r = (r1,72,...2n), ¥ = (Y1,Y2,---Yn) € Zy is defined by z -y = Yo i
Using the inner product, the dual code C*+ of C is defined by C+ = {z €
Z2|x-c=0 Ve e C}. The code C is called self-orthogonal if C' C C+.

Many authors look at self-orthogonal codes, for example, [2,7,8,13]. Follow-
ing are some preliminary results on self-orthogonal codes that are useful here:
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Lemma 1 (Theorem 1.4.3, [10]). (i) If x € Z} then wy(z) =z - = (mod 2).
(i) If x € Z%§ then wy(x) = x - x (mod 3).

Note that this result does not hold for x € Z;; when p > 3, the reason being that

when x € Zy, wy(r) = Zf:_ll n;, where n; is the number of non-zero i’s in z,
and z-x =31 | 2? = ny+n2224+n33?+...+ny_1(p—1)%. This does not imply
that wy () = -z (mod p). Lemma 1 does tell us whether a given ternary code

is self-orthogonal.

Lemma 2 (Theorem 1.4.10, [10]). Let C be an [n,k,d] code over Zs. C is
self-orthogonal if and only if the weight of every non-zero codeword is divisible
by 3.

Again this result cannot check the self-orthogonality of codes over Z,, for p > 3.
For this we need the following result.

Lemma 3 (Proposition 1 [13]). Let p be an odd prime and C be a linear code
over Zy. Then C is self-orthogonal if and only if c-c=0Vce C.

An important invariant of a code is the minimum distance between code-
words. The Hamming distance d (z,y) between two vectors x,y € Z; is defined
to be the number of coordinates in which x and y differ. The minimum distance
of a code C' is the smallest distance between distinct codewords, and is simply
denoted by d. The higher the minimum distance, the greater the number of er-
rors that can be corrected. If the minimum distance d of an [n, k] code is known
then C'is an [n, k, d] code.

The weight enumerator of C is the polynomial We(z,y) = > i, A;z™ 'y,
where A; is the number of codewords of weight i. A code is called a two-weight
code if |{i]t # 0 and A; # 0} = 2. More details on two-weight codes can be
found in [3,6,9], etc. and the references therein.

The trace map can be used to go down from a code defined over an extension
field to a code defined over the ground field. Let F, be the ground field of the
extended field Fy-. Let C be an Fy--linear code of length n and T'r : Fyr — Fy be
the trace. The code Tr(C), defined as the set of all (T'r(xy), Tr(x2), ..., Tr(xy,)),
is called the trace code, where (x1, 9, ..., x,) € C. We note that the codes found
in this paper could be classed as trace codes, since they are found using a trace
map. See [1] for example for details on trace codes.

‘We now have some of the tools required to classify the codes found in this pa-
per. In the next section we study the distribution of the trace map over GF(p, 2),
using the argument az?. In Section 3 we construct our codes and study their
properties. In the final section, we give some conclusions and detail further work.

2 Distribution of the Tr(azx?) over GF(p,2)

Let p(z) be a primitive polynomial of degree m over Z,. The Galois field of
characteristic p is defined to be the quotient field GF'(p, m) = Z,[x]/(p(z)). Let
¢ be a root of p(z) and therefore GF(p, m) = Z,[¢]. Any element in GF(p, m)
can be written as a polynomial of ¢ over Z,, and further it is well known that

GF(p,m)={0,1,¢,¢?,...,¢"" 72}
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Definition 1. Let GF(p,m) be the Galois field of characteristic p. The trace
map Tr : GF(p,m) — Z, is defined by Tr(z) = + zP + T

Theorem 1. The trace map satisfies the following properties:

(i) Tr(x+y) =Tr(z)+Tr(y) Va,y € GF(p,m).

(it) Tr(az) = aT'r(x) Y a € Z,, x € GF(p,m).

(i11) Tr(zP) =Tr(z) Va € GF(p,m).

(iv) Tr(a) =am Y a € Zy.

(v) Tr(x) =0 if and only ifx = y? —y for some y € GF(p,m).

(vi) As x ranges over GF(p,m), Tr(x) takes each element in Z, equally often
™~ times.

Since every non-zero element of GF(p,2) can be written as a power of the
primitive element ¢, we first identify the powers of  that have trace zero.

Lemma 4. Let Tr be the trace map over GF(p,2) defined by Tr(x) = x + zP.
Let ¢t € GF(p,2)* = GF(p,2) \ {0}, where 0 <t < p? —2. Then

i. Tr(¢" ) =
ii. For0<t< % Tr(¢h) # 0.
iii. If Tr(¢t) = 0 then Tr(¢tF+1)) =0, where k =0,1,...,p — 2.

Proof:

i. By using the definition of the trace map we have
p2_
Tr(c" ) = ("% + (C%“)p = (1 + g( 2 1)) .

Since C”2’1 is the only element in GF(p,2)* such that C”Q’l = 1, we have

2

C<pT> = —1. Therefore T’I"(C%) = 0.
ii. Let Tr(¢*) = 0 for some ¢, 0 < t < 5%, This implies that

¢ =0=¢"=00r (P =1

Since ¢ is a primitive element of GF(p,2)*, ¢* # 0 for any ¢. Thus P~V =

—1 and ¢P=Y2 = 1. Hence (p?> — 1)|(p — 1)2t, i.e., 2(p — 1)t = (p*> — 1)m

(p H)m a contradiction to the
assumption. Therefore Tr(¢t) # 0 for any ¢, 0 < t < B~ +1 and the minimum
value of ¢ such that Tr(¢*) = 0is t = 224

iii. From the definition of the trace map if Tr(¢") = 0 then ¢! + (" =0 =
(Ct)2k _ (Ctp)Zk- Therefore TT(ct(2k+1)) _ Ct(2k+1) + <tp(2k+1) _ Ctéﬂtk +
CRthpty — (te2the o ¢2thp ety — O, Thus if T7(¢t) = 0 then Tr(¢HZF+1)) = 0.
From part (vi) of Theorem 1 there are p — 1 elements in GF(p,2)* such
that Tr(x) = 0. Hence if Tr(¢*) = 0 then Tr(¢**+1) = 0 for all k =
0,1,2,...,p—2. 0

for some m € Z%. This implies that ¢ =
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Corollary 1. For x € GF(p,2)*, Tr(z) = 0 if and only if
o= ((B) @) — etk PR here k= 0,1,2,...,p — 2.

The base field GF(p,1) = Z, is a subfield of the extended field GF'(p,2). The
next lemma gives us those indices t for which ¢t € GF(p,1)*.

Lemma 5. Let ¢! € GF(p,2)*, for somet, 0 <t <p?—1.1If(" € GF(p,1)*
then t = (p+ 1)k.

Proof: Let ¢* € GF(p,2)*, for some t, 0 <t <p?—1. Now GF(p,1) X Z, is
a subfield of GF(p,2). Hence if ¢! € GF(p,1)* = Z,\{0} then Tr(CtCPTH) =

(tTr(ngH) =0, from part (ii) of Theorem 1 and part (i) of Lemma 4.
But from Corollary 1, if x € GF(p,2)*, such that Tr(z) = 0 then « =

)@ — cot ke P Hence ¢t¢BE = ¢PHDECEEE o ot — DR

(p+1)

since (* 2 # 0. Therefore if ¢! € GF(p,1)* thent = (p+1)k,k=0,1,2,...,p—
2, i.e., ¢' is an element of the subfield when t = (p+1)k, k=0,1,2,...,p—2. O

Thus far we have identified the elements ¢* € GF(p,2)* which have trace 0
or are in the base field. We are now in a position to study the distribution of
Tr(ax?), when both a and x range over GF(p,2). A useful tool in this study is
to list the elements of GF(p,2)* in a two-dimensional array based on the powers
of a chosen primitive element (.

Let ¢ be a primitive element of GF(p, 2). Then GF(p,2)* = {1,(,¢2,...,¢P" 2}

+1 P;rl) 2p2—3p+2p—34p+1 2(p%-1)
2 = C 2 3

and sz_l — CO — 1. Also C(”T)(2p—3)+(
Cptl = 1. The elements in GF(p,2)* can now be listed by means of a (p — 1) x

(p+1) matrix: [Q(pTH)(%HHd} , where k =0,1,2,...,p—2 ranges over the rows
of the matrix creating p — 1 rows and d = 0,1,2,...,p ranges over the columns
of the matrix creating p + 1 columns. This (p — 1) X (p 4+ 1) matrix is given by
R I D T o T (2 B - P
CEs el (e
.C(%)mﬂ) é(%)(%ﬂwd é(%)(zkﬂw(%l) é(%)(%ﬂ)ﬂ ’
_C(Lﬁl)(%ﬂ?) C(%)(Qpﬂ%#d Cp2—1 -1 C(%)@pﬁq’)ﬂ)_

This arrangement of the elements of GF(p,2)* enables us to better under-
stand the distribution of the values of the trace map. For ease of reading let
ag,k=0,1,...p— 2, be a listing of the non-zero elements of the base field.

Lemma 6. The trace of the elements of GF (p,2)* is distributed in the following
manner:

i. The trace of each element in the first column of the matriz representation of
GF(p,2)* is zero.
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The trace of the elements in every other column of the matriz representation
of GF(p,2)* takes every element in Z,\{0} once only.

Proof:

i.

ii.

From Corollary 1 it is clear that the trace of the elements in the first column
of the matrix representation of GF(p,2)* is zero, i.e., Tr (C(pTH)(%H)) =
0,Vk=0,1,2,...,p—2.

From Lemma 5 the trace of the elements in the d" column (d # 0) of the
matrix is given by
TT(C(PT“)(%H)H) _ Tr(((pﬂ)k(%“cd)

pt2d+1

=Tr(ar¢ 2 )( from Lemma 5)

pt2d+1

=aTr(¢ 2 ) ;a, € GF(p,1)" =7Z,\{0}

From Corollary 1 we know that for z € GF(p,2)*, Tr(z) = 0 if and only if
T = C(%ﬂ)(gk"’l), where £k =0,1,2...,p — 2 and therefore TT(C%M) #0
foralld=1,2,...,p, ie, Tr( er22d+1) is fixed for each column. In addition,
ay, represents every element in Z,\{0} for k =0,1,2,...,p—2. Consequently

the trace of the elements in the d*" column of the matrix representation of
GF(p,2)* takes each element in Z,\{0} exactly once. O

Ezample 1. Consider the primitive polynomial p(x) = 22 + x + 2 over Zs. The
elements in GF(5,2)* = {1,(,¢?,...,¢**} and their trace values are given in the
following table:

z |z =a1( + ao|Tr(z)||z |z =ail+ao|Tr(z)||z |z =a1l+ ao|Tr(x)
1]o¢c+1 2 ¢ l3¢+1 4 ¢®l2¢ +3 4
¢ |1¢+0 4 ¢3¢ +4 0 ¢M1c+1 1
¢?la¢+3 2 ¢Ol1¢ + 4 2 ¢Blo¢+3 1
¢lac+2 0 ¢M3¢+3 3 ¢3¢ +0 2
¢3¢ +2 1 ¢?lo¢ + 4 3 ¢2¢ + 4 1
CPlAC +4 4 ¢Blac +0 1 ¢t2¢ +1 0
¢tlo¢ +2 4 ¢M1c+2 3 ¢2lac+1 3
¢"12¢+0 3 ¢B1¢+3 0 ¢Bl2¢ 42 2

The matrix representation of GF(5,2)* is then:
¢t e (¢ q ¢®
9 10 #11 12 13 14
GF(5,2)"= 515 516 517 gls 219 220
21 22 +23 24 _ 1 #25 _ ~ #26 _ /2
CHEREBA_1 (B =M=,
and the corresponding trace matrix is:

014434
023313
041121

032242],

Tr(GF(5,2)*)=
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It is clear that the first column is an all zero column and every non-initial column
contains each non-zero element of Zs exactly once.

We can now examine the trace distribution for the specific case considered in
this paper: Tr(ax?).

Theorem 2. Let T'r be the trace map over GF(p,2). As x ranges over GF(p, 2)*
and for a € GF(p,2)*, Tr(ax?) takes each element in Z,\{0} equally often either
p+ 1 times or p— 1 times.

In the matrix representation of GF(p,2)* (Lemma 6), we note that there
are p—;l columns with odd powers of ¢ and p—;l columns with even powers of (.
We will label these columns as odd and even, respectively. We call the matrix
obtained by taking the trace of each element in the matrix representation of
GF(p,2)* as the trace matrix of GF(p,2)*.

Before we can prove Theorem 2, we need to work out some more details of
the trace matrix. We consider the two cases, p =1 (mod 4) and p = 3 (mod 4)
separately.

Case I: p =1 (mod 4) In this case p%l is odd. From Lemma 4, TT(C(%)(QICJFI)) =
0 forall k=0,1,2,...,p— 2. Hence the first odd column (which is the first col-

umn of the matrix representation of GF(p,2)*) has trace zero. Therefore there

are % —1= % odd columns in the matrix representation of GF(p,2)* with

non-zero trace.

From Lemma 6, the trace of the elements of each of these p%l odd columns

contain each element in Z,\{0} exactly once. Thus the trace of all the odd powers

of ¢ gives us each element in Z,\{0}, Z5* times, and so the trace of all the even

2
powers of ¢ gives us each element in Z,\{0} , p%l
Case II: p = 3 (mod 4) Here p%l is even. As in case I, Tr(C(pTH)(%H)) =0 for
all k=0,1,2,...,p—2 and the first even column has trace zero. Therefore there
are other % —1= % even columus in the matrix representation of GF(p, 2)*
with non-zero trace and hence the trace of all the even powers of { gives us each
element in Z, \ {0}, pT_l times. Consequently the trace of all the odd powers of
¢ gives us each element in Z,\ {0} , 25+ times.

Proof of Theorem 2 Let a € GF(p,2)* be an even (resp. odd) power of ¢

and consider the set {Tr(ax?) | * € GF(p,2)*}. This set can be written as two
copies of the trace of the elements in the set {¢** | h=0,1,2,..., p22_3} (resp.
{¢?h 1 | h=0,1,2,..., #}) or its cyclic shifts.

Suppose p = 1 (mod 4). If a € GF(p,2)* is an odd power of ¢ then from
Case I above, as x ranges over GF(p,2)*, Tr(ax?) takes each element in Z,\{0}
equally often p — 1 times. If a € GF(p,2)* is an even power of ¢ then Tr(ax?)
takes each element in Z, \ {0} equally often p + 1 times.

Similarly if p = 3 (mod 4), when a € GF(p,2)* is an even power of ¢ then
from Case II above, as = ranges over GF(p,2)*, Tr(ax?) takes each element in
Z,\{0} equally often p — 1 times and when a € GF(p,2)* is an odd power of (,
Tr(az?) takes each element in Z,\{0} equally often p + 1 times. (See Examples
2 and 3.) O

times.
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3 Two-weight Self-Orthogonal codes via Tr(ax?) over
GF(p,2)

Thus far we have studied the distribution of Tr(ax?) for x ranging over the
Galois field GF(p,2). In this section we apply this result to construct cyclic,
two-dimensional, two-weight, self-orthogonal codes over Z,.

Theorem 3 (Codes from Tr(ax?)).
Let GF(p,2) be the Galois Field of characteristic p > 3. Let Tr be the trace
map over GF(p,2). Consider the matriz H = [Tr(az?)]qrecr(p.2)-

i. H is a linear code over Z, with parameters [n, k,dy| = [p?,2, (p—1)?], where
dy s the minimum Hamming distance.
ii. H is a two-weight code with Hamming weights p*> — 1 and (p — 1)2.
11i. The code obtained by deleting the first column of H, denoted by H*, is a
cyclic code with parameters [p* — 1,2, (p —1)] .
w. Forp >3, H is a self-orthogonal code.

Proof:

i. Let ¢ be a primitive element of GF(p,2) and ¢; be any element in GF(p, 2).
Consider the matrix

TT(C?),

_ i =1,2,...,p°
Gn = Tr(¢c?), 1,2,.

1
1

2 .
) ) "7p 2><p2

The two rows of G are linearly independent: For ag, a1 € Zj, and for all ¢ =
L,2,...,p% aoTr(c})+aiTr((c?) = 0= ap+ai( =0 since c? # 0 for some i
= ap = a; = 0 since 1 and ¢ are linearly independent over Z,,.
Now consider all linear combinations of the two rows in Gg. This gives us
aoTr(c?) + a1Tr(¢c?) = Tr((ag + a1()c?), i = 1,2,...,p?. Thus Gy is a
generator matrix for H, and consequently the length n and the dimension k&
of H are p? and 2, respectively, and H is a linear code.
Now from Theorem 2 every non-zero row of H contains every non-zero ele-
ment of Z,, equally often either p+1 times or p—1 times. Since there are p—1
non-zero elements in Z,, the minimum Hamming weight of H is (p — 1)2.
ii. Since every non-zero codeword of H contains each element in Z,\ {0} equally
often either p+ 1 times or p— 1 times, the codewords have Hamming weights

either p> — 1 or (p — 1)?, and H is a two-weight code over Z,,.
iii. Let H* be obtained by deleting the first column of H: H* =

Tr(0) Tr(0) ... Tr(0) Tr(0) Tr0) ... Tr(0)

5 (22 -3) 5 (22 -3)
Tr(1) Tr(c2) ... Tr(¢ 2 ) Tr(1) Tr(c2) ... Tr(¢ 2 )
5 e 5 2 (@°=3)
Tr(¢) Tr(¢%) ... Tr(¢¢ 2 ) Tr(¢) Tr(¢%) ... Tr(¢¢ 2 )
(7 =3) 5 (P7=3)

@2 -: »?-
Tr¢?)  TrchH ... Tr2¢tT 2 ) Tr¢?)  Trch .. Tr2¢tT 2 )

2 ’ 2
2 2 2 (P7=3) 2 2 2 (p—=3)
Tr(cP =2) Tr(¢PT) L. Tr(cP 27T Z ) Tr(ePTT2) Tr(cPT) L Tr(eP 27T 2 )
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The second and third rows generate this code, the next consecutive two
rows are the left cyclic shift by one element of the second and third rows,
respectively, and so on. Thus H* is a cyclic code.

Let S be the dot product of every non-zero codeword of H with itself. Again
from Theorem 2 every non-zero codeword of H contains each element in
Z,\{0} equally often either p + 1 times or p — 1 times. Therefore either

p—1

S=(p+1)Y i =Ep+1)p* - 3p+1)
i=1

or
p—1
S=(p-DS " 2=Lp_12p?-3p+1
(p );Z 6(p )(2p* —3p+1)

If p > 3 we have S = 0 mod p and from Theorem 3 H is a self-orthogonal
code over Z, for p > 3. O

The following two examples illustrate Theorems 2 and 3.

Example 2. Consider the primitive polynomial p(x) = 2% + x + 2 over Z3 and
let ¢ be a root of p(z). The elements of GF(3,2) = Zs[z]/(p(z)) = Z3[¢] can
be listed as {0,1,¢,¢?,...,¢"}. The following table provides the trace value of
these elements and their squares.

zlz = a1 [Tr(x)[2?[Tr(x®)|[z [z = arl[Tr(x)|2?[Tr @)z ¢ = ail[Tr(x)[2®[Tr(z?)
+ao +ao +ao

0[0¢+0 [0 0 [0 Cl2¢+1 o ¢ ¢l2¢c+0 1 &

1/0¢+1 |2 12 ¢l2¢+2 |2 ¢tlo ¢tlic+2 |o ¢t

Cl1¢+0 |2 ¢zlo ¢to¢+2 |1 112 ¢Tlic+1 |1 ¢tlo

Taking a,z € GF(3,2) = {0,1,¢,¢%,...,¢"}, the 9x 9 matrices A = [(a2?)]a,cecr(3,2)
and H = [T?”(CLLEQ)}Q,IGGF(&Q) are given by

00 0O0OOOODO 000000000
0¢°¢*¢H ¢ ¢ ¢t ¢t 020102010
0¢'¢*¢>¢" ¢t e 022112211
A=1|. . . o , H=1|.........
0¢°¢°¢*¢r ¢ ¢ ¢ ¢t 002010201
0¢7¢H¢* ¢ ¢ 012211221
A generator matrix for H is
00000000
20102010
22112211
020102010 . . . .
Gu= 022112211 2X9vvhlle H*= is obtained by delet-
02010201
12211221 oxs

ing the first column of H. H is a linear code over Zz with parameters [9,2,4]. The
Hamming weight of each non-zero codeword is either 4 or 8. Thus H is a two-weight
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code. The punctured code H*, obtained by deleting the first column of H, is an [8, 2, 4]
cyclic code over Zs. The weight of each non-zero codeword is not divisible by 3 and
from Theorem 2, H is not a self-orthogonal code.

Ezample 3. Consider the primitive polynomial p(x) = 22 + = + 2 over Zs and
let ¢ be a root of p(z). The elements of GF'(5,2) = Zs[z]/(p(z)) = Z5[¢] can
be listed as {0,1,¢,¢?,...,¢?*}. The following table provides the trace values of
squares of these elements.

x |22 Tr(:cQ) x |22 Tr(wQ) x |z? Tr(xQ) x |22 Tr(asQ) z |a? TT‘(I2)
O 0 0 C4 CS 4 CQ 18 1 <—14 C4 1 CIQ <—14 3
111 12 45 ClO 2 410 CZO 1 C15 CS 4 CZO <16 4
g CQ 2 CG <12 3 Cll 422 3 <16 C8 4 C21 <-18 1
2| 4 7| ~14 12 17| ~10 22| 120
53 26 411 gs 216 i g13 (1:2 g 218 512 ; gzg 222 :1))
Selecting a,z € GF(5,2) = {0,1,¢, ¢? ¢?*}, the matrix A = [(a2?)], vecr.2)
is given by
00 00O0OOTOOOTUOU OO OO O0O...0
0 2 4 6 8 ~10 +12 14 ~16 ~18 ~20 +22 0 2 22
8 21 gs 25 27 ((:9 211 213 215 517 glg gm 223 51 23 ’ 223

1 CIQ <21 423 Cl EQI .
and the matrix H = [Tr(ax )]a’weGF(g)’g) is given by

[0000000000000000000000000
0221442334113221442334113
0404303101202404303101202

0322144233411322144233411
010240430310120240430310120

25x25

The rows of H can be generated by

[0221442334113221442334113

G =10404303101202404303101202

2x25

Therefore H is a linear code over Zs and its parameters are [25,2;16]. The
punctured code H*, obtained by deleting the first column in H, is a [24, 2, 16]
cyclic code over Zs. The Hamming weight of each non-zero codeword of H is
either 16 or 24. Thus H is a two-weight code. From part iv of Theorem 3, H is
a self-orthogonal code.

4 Conclusions and Further Work

Even though much work has been done on the classification of nonbinary self-
orthogonal codes (]2, 7,5], these deal mostly with dimension 3 and larger. The
codes we find here are 2-dimensional.
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In this paper we studied the distribution of Tr(az?) and used it to construct

two-dimensional, two-weight, cyclic, self-orthogonal codes over Z,,. The questions
that arise are whether we can extend this construction to construct codes over
GF(p,?2) using Tr(ax) for any integer A > 0 and in general over GF(p,m). We
are currently doing this research.
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